23 research outputs found

    Анізотропний ΠΌΠ΅Ρ‚Π°Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΈΠΉ ΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡

    Get PDF
    Purpose. Investigation of the peculiarities of the electric field energy conversion by an anisotropic meta-medium with a negative value of the dielectric constant in one of the selected main crystallographic directions. Methodology. Research was carried out using methods of physical and mathematical modeling of anisotropic metadielectric converter; using methods to optimize the function of the dependence of the conversion factor m, anisotropic metadielectric converter, on the angle Ξ± between one of the crystallographic axes and the edge of the platinum a, at fixed anisotropy coefficients of metadielectric material. Findings. For the first time, the peculiarities of theΒ  electric field transformation by an anisotropic meta-medium with a negative value of the dielectric constant in one of the selected main crystallographic directions were studied. It is established that at the moment of application to the upper and lower faces Β of the anisotropic metadielectric plate, which is the basis of the anisotropic metadielectric converter, some potential difference leads to polarization of its volume and the emergence of both longitudinal Β and transverse components of the vortex electric field. This situation leads to axial folding of its internal field, which in turn causes the appearance of micro-vortices of the electric field, given by the expression , where Β - the circular time of rotation of the micro-vortex, and signs "+" and "-" - indicate the direction of its rotation. Such axial electric micro vortices are an efficient mechanism that pumps energy between the physical vacuum and, in our case, the anisotropic metadielectric plate of the transducer. The dependence of the transformation coefficient m of this medium on the value of anisotropy Β is analyzed. Studies have shown that in the interval Β Β the value of m is characterized by a negative value, and in the interval  – positive, this allowed us to determine the areas of stable existence of different types of energy. The use of metadielectric material in comparison with the classical one is characterized by values of m>1. Note that in some cases there is an abnormal increase in the coefficient. Originality. Using the representations of vortex electrodynamics, the mechanism of energy interaction between the vortex electric field of an anisotropic metaenvironment and the physical vacuum is proposed. Practical value.Β  A model of the original design of an anisotropic metadielectric converter is proposed. Areas of its practical use in the form of generators of electricity, heat and cold are determined, calculated expressions for their efficiency are in the range Ξ· = 0.5 Γ· 0.98, and the cooling temperature can reach the temperature of liquid helium.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. ИсслСдованиС особСнностСй прСобразования энСргии элСктричСского поля Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠΉ мСтасрСдой ΠΏΡ€ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ диэлСктричСской проницаСмости Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… Π³Π»Π°Π²Π½Ρ‹Ρ… кристаллографичСских Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ исслСдования с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ„ΠΈΠ·ΠΈΠΊΠΎ-матСматичСского модСлирования Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠ³ΠΎ мСтадиэлСктричСского прСобразоватСля; с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ зависимости коэффициСнта прСобразования m, Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠ³ΠΎ мСтадиэлСктричСского прСобразоватСля, ΠΎΡ‚ ΡƒΠ³Π»Π° Ξ± ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· кристаллографичСских осСй ΠΈ Ρ€Π΅Π±Ρ€ΠΎΠΌ пластитин Π°, ΠΏΡ€ΠΈ фиксированных коэффициСнтах Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΠΈ мСтадиэлСктричСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. Β ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ исслСдованы особСнности прСобразования элСктричСского поля Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠΉ мСтасрСдой ΠΏΡ€ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ диэлСктричСской проницаСмости Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… Π³Π»Π°Π²Π½Ρ‹Ρ… кристаллографичСских Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ. УстановлСно, Ρ‡Ρ‚ΠΎ Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ прилоТСния ΠΊ Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ ΠΈ Π½ΠΈΠΆΠ½Π΅ΠΉ граням Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠΉ мСтадиэлСктричСской пластины, которая являСтся основой Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠ³ΠΎ мСтадиэлСктричСского прСобразоватСля, Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ разности ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠ² ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ поляризации Π΅Π΅ объСма ΠΈ возникновСнию ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½ΠΎΠΉ, Ρ‚Π°ΠΊ ΠΈ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Π²ΠΈΡ…Ρ€Π΅Π²ΠΎΠ³ΠΎ элСктричСского поля. Вакая ситуация Π²Π΅Π΄Π΅Ρ‚ ΠΊ Π°ΠΊΡΠΈΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ ΡΠ²ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΡŽ Π΅Π΅ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ поля, Ρ‡Ρ‚ΠΎ Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ появлСнию ΠΌΠΈΠΊΡ€ΠΎΠ²ΠΈΡ…Ρ€Π΅ΠΉ элСктричСского поля, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ Β Π³Π΄Π΅Β   – круговая частота вращСния микровихря, Π° Π·Π½Π°ΠΊΠΈ Β«+Β» ΠΈ «–» – ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π΅Π³ΠΎ вращСния. Π’Π°ΠΊΠΈΠ΅ Π°ΠΊΡΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ элСктричСскиС ΠΌΠΈΠΊΡ€ΠΎΠ²ΠΈΡ…Ρ€ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ эффСктивным ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ, ΠΏΠ΅Ρ€Π΅ΠΊΠ°Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌ ΡΠ½Π΅Ρ€Π³ΠΈΡŽ ΠΌΠ΅ΠΆΠ΄Ρƒ физичСским Π²Π°ΠΊΡƒΡƒΠΌΠΎΠΌ ΠΈ Π² нашСм случаС, Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠΉ мСтадиэлСктричСской  пластиной прСобразоватСля. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· зависимости коэффициСнта прСобразования m этой срСды ΠΎΡ‚ значСния Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΠΈ . ИсслСдования продСмонстрировали, Ρ‡Ρ‚ΠΎ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Β Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° m характСризуСтся ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ, Π° Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅  – ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ, это ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ области ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ сущСствования Ρ€Π°Π·Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² энСргий. ИспользованиС мСтадиэлСктричСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с классичСским характСризуСтся значСниями m>1. ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π² Ρ€Π΅Π΄ΠΊΠΈΡ… случаях Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π°Π½ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ рост ΡƒΠΏΠΎΠΌΠΈΠ½Π°Π΅ΠΌΠΎΠ³ΠΎ коэффициСнта. Научна Π½ΠΎΠ²ΠΈΠ·Π½Π°. Π‘ использованиСм прСдставлСний Π²ΠΈΡ…Ρ€Π΅Π²ΠΎΠΉ элСктродинамики ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ энСргСтичСского взаимодСйствия ΠΌΠ΅ΠΆΠ΄Ρƒ энСргиями элСктричСского поля Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠΉ мСтасрСды ΠΈ физичСского Π²Π°ΠΊΡƒΡƒΠΌΠ°. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° модСль ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½ΠΎΠΉ конструкции Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠ³ΠΎ мСтадиэлСктричСского прСобразоватСля. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ области практичСского использования Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠ³ΠΎ мСтадиэлСктричСского прСобразоватСля Π² Π²ΠΈΠ΄Π΅ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠ² элСктричСства, Ρ‚Π΅ΠΏΠ»Π° ΠΈ Ρ…ΠΎΠ»ΠΎΠ΄Π°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ расчСтныС выраТСния для ΠΈΡ… коэффициСнта ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠ³ΠΎ дСйствия, находящСгося Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Ξ· = 0,5Γ·0,98, Π° Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° охлаТдСния ΠΌΠΎΠΆΠ΅Ρ‚ Π΄ΠΎΡΡ‚ΠΈΠ³Π°Ρ‚ΡŒ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ гСлия.ΠœΠ΅Ρ‚Π° Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ. ДослідТСння особливостСй пСрСтворСння Π΅Π½Π΅Ρ€Π³Ρ–Ρ— Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ поля Π°Π½Ρ–Π·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΈΠΌ мСтасСрСдовищСм ΠΏΡ€ΠΈ від’ємному Π·Π½Π°Ρ‡Π΅Π½Π½Ρ– Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— проникності Π² ΠΎΠ΄Π½ΠΎΠΌΡƒ Π· ΠΎΠ±Ρ€Π°Π½ΠΈΡ… Π³ΠΎΠ»ΠΎΠ²Π½ΠΈΡ… кристалографічних напрямків. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ дослідТСння. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ дослідТСння Ρ–Π· застосуванням ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² Ρ„Ρ–Π·ΠΈΠΊΠΎ-ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ модСлювання Π°Π½Ρ–Π·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Π°Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡Π°; Π· використанням ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ— Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ— залСТності ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Π° пСрСтворСння m, Π°Π½Ρ–Π·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Π°Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡Π°, Π²Ρ–Π΄ ΠΊΡƒΡ‚Π° Ξ± ΠΌΡ–ΠΆ ΠΎΠ΄Π½Ρ–Ρ”ΡŽ Π· кристалографічний осСй Ρ– Ρ€Π΅Π±Ρ€ΠΎΠΌ пласитини Π°, ΠΏΡ€ΠΈ фіксованих ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Π°Ρ… Π°Π½Ρ–Π·ΠΎΡ‚Ρ€ΠΎΠΏΡ–Ρ— ΠΌΠ΅Ρ‚Π°Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Π’ΠΏΠ΅Ρ€ΡˆΠ΅ дослідТСно особливості пСрСтворСння Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ поля Π°Π½Ρ–Π·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΈΠΌ мСтасСрСдовищСм ΠΏΡ€ΠΈ від’ємному Π·Π½Π°Ρ‡Π΅Π½Π½Ρ– Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— проникності Π² ΠΎΠ΄Π½ΠΎΠΌΡƒ Π· ΠΎΠ±Ρ€Π°Π½ΠΈΡ… Π³ΠΎΠ»ΠΎΠ²Π½ΠΈΡ… кристалографічних напрямків.  УстановлСно, Ρ‰ΠΎ Ρƒ ΠΌΠΎΠΌΠ΅Π½Ρ‚ прикладання Π΄ΠΎ Π²Π΅Ρ€Ρ…Π½ΡŒΠΎΡ— Ρ‚Π° Π½ΠΈΠΆΠ½ΡŒΠΎΡ— Π³Ρ€Π°Π½Π΅ΠΉΒ Π°Π½Ρ–Π·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΡ— ΠΌΠ΅Ρ‚Π°Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— пластини, яка Ρ” основою Π°Π½Ρ–Π·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Π°Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡Π°, дСякої Ρ€Ρ–Π·Π½ΠΈΡ†Ρ– ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–Π°Π»Ρ–Π² Β ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ поляризації Ρ—Ρ— об’єму Ρ‚Π° виникнСння як ΠΏΠΎΠ·Π΄ΠΎΠ²ΠΆΠ½ΡŒΠΎΡ— , Ρ‚Π°ΠΊ Ρ– ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΡ—  складових Π²ΠΈΡ…Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ поля. Π’Π°ΠΊΠ° ситуація Π²Π΅Π΄Π΅ Π΄ΠΎ Π°ΠΊΡΡ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ згортання Ρ—Ρ— Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½ΡŒΠΎΠ³ΠΎ поля, яка Ρƒ свою Ρ‡Π΅Ρ€Π³Ρƒ Π·ΡƒΠΌΠΎΠ²Π»ΡŽΡ” появу ΠΌΡ–ΠΊΡ€ΠΎΠ²ΠΈΡ…ΠΎΡ€Ρ–Π² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ поля, Ρ‰ΠΎ ΠΏΠΎΠ΄Π°ΡŽΡ‚ΡŒΡΡ Π²ΠΈΡ€Π°Π·ΠΎΠΌΒ Β Β Β Β Β Β Β  , Π΄Π΅  – ΠΊΡ€ΡƒΠ³ΠΎΠ²Π° частота обСртання ΠΌΡ–ΠΊΡ€ΠΎΠ²ΠΈΡ…ΠΎΡ€Ρƒ, Π° Π·Π½Π°ΠΊΠΈ Β«+Β» Ρ‚Π° «–» – ΠΏΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡŒ напрямок ΠΉΠΎΠ³ΠΎ обСртання. Π’Π°ΠΊΡ– Π°ΠΊΡΡ–Π°Π»ΡŒΠ½Ρ– Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Ρ– ΠΌΡ–ΠΊΡ€ΠΎΠ²ΠΈΡ…ΠΎΡ€ΠΈ Ρ” Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΎΠΌ, Ρ‰ΠΎ ΠΏΠ΅Ρ€Π΅ΠΊΠ°Ρ‡ΡƒΡ” Π΅Π½Π΅Ρ€Π³Ρ–ΡŽ ΠΌΡ–ΠΆ Ρ„Ρ–Π·ΠΈΡ‡Π½ΠΈΠΌ Π²Π°ΠΊΡƒΡƒΠΌΠΎΠΌ Ρ– Π² Π½Π°ΡˆΠΎΠΌΡƒ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ, Π°Π½Ρ–Π·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΡŽ ΠΌΠ΅Ρ‚Π°Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΡŽ ΠΏΠ»Π°ΡΡ‚ΠΈΠ½ΠΎΡŽ ΠΏΠ΅Ρ€Π΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡Π°. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π°Π½Π°Π»Ρ–Π· залСТності ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Π° пСрСтворСння m Ρ†ΡŒΠΎΠ³ΠΎ сСрСдовища Π²Ρ–Π΄ значСння Π°Π½Ρ–Π·ΠΎΡ‚Ρ€ΠΎΠΏΡ–Ρ— . ДослідТСння продСмонстрували, Ρ‰ΠΎ Ρƒ Ρ–Π½Ρ‚Π΅Ρ€Π²Π°Π»Ρ– Β Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° m Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡ”Ρ‚ΡŒΡΡ від’ємним значСнням, Π° Π² Ρ–Π½Ρ‚Π΅Ρ€Π²Π°Π»Ρ–  – Π΄ΠΎΠ΄Π°Ρ‚Π½Ρ–ΠΌ, Ρ†Π΅ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π²ΠΈΠ·Π½Π°Ρ‡ΠΈΡ‚ΠΈ області ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½ΠΎΠ³ΠΎ існування Ρ€Ρ–Π·Π½ΠΈΡ… Π²ΠΈΠ΄Ρ–Π² Π΅Π½Π΅Ρ€Π³Ρ–ΠΉ. Використання ΠΌΠ΅Ρ‚Π°Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Π° Π² порівнянні Ρ–Π· класичним Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡ”Ρ‚ΡŒΡΡ значСннями m>1. Π—Π°Π·Π½Π°Ρ‡ΠΈΠΌΠΎ, Ρ‰ΠΎ Π² ΠΎΠΊΡ€Π΅ΠΌΠΈΡ… Π²ΠΈΠΏΠ°Π΄ΠΊΠ°Ρ… ΡΠΏΠΎΡΡ‚Π΅Ρ€Ρ–Π³Π°Ρ”Ρ‚ΡŒΡΡ аномальнС зростання Π·Π³Π°Π΄ΡƒΠ²Π°Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Π°. Наукова Π½ΠΎΠ²ΠΈΠ·Π½Π°. Π— використанням ΡƒΡΠ²Π»Π΅Π½ΡŒ Π²ΠΈΡ…Ρ€ΠΎΠ²ΠΎΡ— Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΡ–ΠΊΠΈ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌ Π΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½ΠΎΡ— Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— ΠΌΡ–ΠΆΒ  Π²ΠΈΡ…Ρ€ΠΎΠ²ΠΈΠΌ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΈΠΌ ΠΏΠΎΠ»Π΅ΠΌ Π°Π½Ρ–Π·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠ³ΠΎ мСтасСрСдовища Ρ‚Π° Ρ„Ρ–Π·ΠΈΡ‡Π½ΠΈΠΌ Π²Π°ΠΊΡƒΡƒΠΌΠΎΠΌ. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π° Ρ†Ρ–Π½Π½Ρ–ΡΡ‚ΡŒ. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ модСль ΠΎΡ€ΠΈΠ³Ρ–Π½Π°Π»ΡŒΠ½ΠΎΡ— конструкції Π°Π½Ρ–Π·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Π°Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡Π°. Β Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ області ΠΉΠΎΠ³ΠΎ ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ використання Ρƒ вигляді Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Ρ–Π² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΠΊΠΈ, Ρ‚Π΅ΠΏΠ»Π° Ρ‚Π° Ρ…ΠΎΠ»ΠΎΠ΄Ρƒ, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠΎΠ²Ρ– Π²ΠΈΡ€Π°Π·ΠΈ для Ρ—Ρ… ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Π° корисної Π΄Ρ–Ρ—, Ρ‰ΠΎ Π·Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² Ρ–Π½Ρ‚Π΅Ρ€Π²Π°Π»Ρ– Ξ·=0,5Γ·0,98, Π° Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° охолодТСння ΠΌΠΎΠΆΠ΅ досягати Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ Ρ€Ρ–Π΄ΠΊΠΎΠ³ΠΎ Π³Π΅Π»Ρ–ΡŽ

    U-Net Model for Logging Detection Based on the Sentinel-1 and Sentinel-2 Data

    Get PDF
    Illegal logging in Ukraine is a big problem that negatively affects both environmental and socio-economic indicators of the country. The main reason for this problem is the lack of independent control over the forest industry. Lack of control, in turn, makes it possible to provide inaccurate information about the permitted logging and to hide the fact of logging. The solution to this problem is the use of modern approaches of Remote Sensing and deep learning to implement mechanisms for forestry monitoring and logging detection based on the satellite data. Most researches on satellite-based logging detection technology are based on the optical satellite missions. However, for countries with temperate and cold climates, the use of such approaches is problematic in winter and autumn due to the lack of vegetative biomass and the high percentage of clouds and snow in satellite images. In this study, we assessed a methodology for detecting logging based on optical and radar images of Copernicus satellite missions, namely Sentinel-l and 2. The obtained results show that when using this approach, it is possible to monitor and detect logging with high accuracy both in summer and in winter with the frequency of data updates once a week. The basis of this methodology is a convolutional neural network with U -Net architecture, which input is a stack of optical and radar images in summer and spring, and works on radar images only in winter and autumn

    Is Soil Bonitet an Adequate Indicator for Agricultural Land Appraisal in Ukraine?

    Get PDF
    Agriculture land appraisal analysis is an important component of the land market. This task is especially essential for Ukraine, which plans to lift the moratorium on land transactions and legalize farmland sales in 2021. Most post-Soviet countries adopted the notion of a soil bonitetβ€”a quantitative score representing natural soil fertility. This score is also proposed in Ukraine to perform agricultural land appraisals. However, this is a static parameter and does not account for the dynamics of actual crop production on the agricultural lands. Moreover, the bonitet score is not crop-specific. Therefore, in this study, we use maps of bonitet based on the soil map and natural-agricultural districts of Ukraine and crop yields at the village scale to explore the relationships between bonitet values and actual crop production in Ukraine. We found that land appraisal is not correlated with the actual soil bonitet

    Despeckling of Multitemporal Sentinel SAR Images and Its Impact on Agricultural Area Classification

    Get PDF
    This chapter addresses an important practical task of classification of multichannel remote sensing data with application to multitemporal dual-polarization Sentinel radar images acquired for agricultural regions in Ukraine. We first consider characteristics of dual-polarization Sentinel radar images and discuss what kind of filters can be applied to such data. Several examples of denoising are presented with analysis of what properties of filters are desired and what can be provided in practice. It is also demonstrated that the use of preliminary denoising produces improvement of classification accuracy where despeckling that is more efficient in terms of standard filtering criteria results in better classification

    Automatic Deforestation Detection based on the Deep Learning in Ukraine

    Get PDF
    Ukraine's big problem is the disappearance of forest cover. According to the international forest monitoring project Global Forest Watch, Ukraine lost 1.08Mha of forests from 2000 to 2020. Such sad statistics are possible only due to the lack of monitoring tools for the forest industry in Ukraine. Such a tool can be created by combining Remote Sensing and Deep Learning approaches. To implement such approach for the automatic use, we combine Optical and Synthetic Aperture Radar images of the Sentinel-2 and Sentinel-1 satellite missions on which object-detection is performed using a U-Net-based neural network trained with use of the semi-supervised learning technique. This approach is being tested and shows its effectiveness in Kyiv region and going to be implemented in the same way for the Lviv, Odessa and Zakarpatya oblasts

    Advanced Method of Land Cover Classification Based on High Spatial Resolution Data and Convolutional Neural Network

    Get PDF
    National Research foundation of Ukraine within the project 2020.02/0284 Β«Geospatial models and information technologies of satellite monitoring of smart city problemsΒ», which won the competition β€œLeading and Young Scientists Research Support”Based on modern satellite products Planet with high spatial resolution 3 meters, authors of this paper improved the neural network methodology for constructing land cover classification maps based on satellite data of high spatial resolution using the latest architectures of convolutional neural networks. The process of information features formation for types of land cover is described and the method of land cover type classification on the basis of satellite data of high spatial resolution is improved. A method for filtering artificial objects and other types of land cover using a probabilistic channel is proposed, and a convolutional neural network architecture to classify high-resolution spatial satellite data is developed. The problem of building density maps for the quarters of the city atlas construction is solved and the metrics for estimating the accuracy of classification map construction methods are analyzed. This will make it possible to obtain high-precision building maps to calculate the building area by functional segments of the Urban Atlas and monitor the development of the city in time. This will make it possible to create the first geospatial analogue of the product Copernicus Urban Atlas for Kyiv using high spatial resolution data. This Urban Atlas will be the first such product in Ukraine, which can be further extended to other cities in Ukraine. As a further development, the authors plan to create a methodology for combining satellite and in-situ air quality monitoring data in the city based on the developed Urban Atlas, which will provide high-precision layers of PM10 and PM2.5 concentrations with high spatial and temporal resolution of Ukraine

    Super resolution approach for the satellite data based on the generative adversarial networks

    Get PDF
    In the past few years, medium and high-resolution data became freely available for downloading. It provides great opportunity for researchers not to select between solving the task with high-resolution data on small territory or on global scale, but with low-resolution satellite images. Due to high spectral and spatial resolution of the data, Sentinel-1 and Sentinel-2 are very popular sources of information. Nevertheless, in practice if we would like to receive final product in 10 m resolution we should use bands with 10 m resolution. Sentinel-2 has four such bands, but also has other bands, especially red-edge 20 m resolution bands that are useful for vegetation analysis and often are omitted due to lower resolution. Thus, in this study we propose methodology for enhancing resolution (super-resolution) of the existing low-resolution images to higher resolution images. The main idea is to use advanced methods of deep learning - Generative Adversarial Networks (GAN) and train it to increase the resolution for the satellite images. Experimental results for the Sentinel-2 data showed that this approach is efficient and could be used for creating high resolution products

    Losses Assessment for Winter Crops Based on Satellite Data and Fuzzy Logic

    Get PDF
    This paper considers the method of the winter crop classification map producing in terms of climatic and weather abnormal conditions in 2020. Given that the traditional method of construction involves the use of a training sample, which is collected in ground surveys along the roads. This sample could not be collected under the strict quarantine regime, that is why the classification map was created based on the sample obtained as a result of the photointerpretation. Both, optical Sentinel-2 and SAR Sentinel-1 satellite data were used. This is due to the fact, that the period of the winter crop classification map producing fell exactly on the period of time (April and May 2020), when the area of study Odesa region (as well as the whole territory of Ukraine) had a high percentage of cloud cover. At the same time, radar imaging techniques allow us to bypass obstacles such as clouds, but also have lower sampling quality. Therefore, it was decided to combine the obtained classification maps based on radar and optical data by fuzzy logic, considering the degree of belonging of each pixel by the value of the normalized difference vegetation index (NDVI). As a result, the obtained classification maps based on photointerpretation sample have an accuracy close to 95%. The fuzzy logic method allows to increase this value by selecting only the best pixels from classification maps based on radar and optical satellite data

    Biophysical Impact of Sunflower Crop Rotation on Agricultural Fields

    Get PDF
    Crop rotation is an important determining factor of crop productivity. Sustainable agriculture requires correct rules of crop rotation. Failure to comply with these rules can lead to deterioration of soil biochemical characteristics and land degradation. In Ukraine as well as in many other countries, sunflower monocropping is common practice and the impact of this fact should be studied to find the most precise rules to save the economic potential of land and minimize land degradation factors. This research provides an evaluation of the sunflower monocropping effect on the vegetation indices obtained from MODIS vegetation indices datasets for Ukraine as one of the countries with the biggest sunflower export in Europe. The crop rotation schemes are represented by their area proportions at the village level calculated based on the crop classification maps for 2016 to 2020. This representation gives the possibility to use regression models and f-test feature importance analysis to measure the impact of 3-year and 5-year crop rotation sequences. For these purposes, we use several models: a four-year binary representation model (model A1) and a model with all possible three-year crop rotation scheme representations (model B). These models gave the possibility to evaluate crop rotation schemes based on their biophysical impact on the next sunflower plantings and found that sunflower planting with an interval of three or more years is optimal in terms of the sustainability of soil fertility
    corecore